

Surface Bias Studies with Monte Carlo Models and Application to Jet-Hadron Correlations

Michael Oliver
In collaboration with Kirill Lapidus and Raymond Ehlers

Yale University

michael.oliver@yale.edu

April 14, 2016

Michael Oliver (Yale)

Outline

- Motivation
- 2 Models
- Methods
- 4 Surface Bias Results
- Observable effects

Studying Energy Loss with Correlations

Hadron-hadron

- -Surface bias by the trigger
- -Broad parton energy distribution

let-hadron

- -Less surface bias
- -Several parameters to vary pathlength
- -Better constrains initial parton energy

Direct photon-hadron

- -No surface bias by trigger
- -Photon p_T approximates initial parton p_T

Complementary observables

Why is Surface Bias Interesting

- Placing certain cuts on reconstructed jets may bias towards hard scatters occurring closer to the surface of the overlap region.
- For a dijet pair, this would enhances the path length of the "away-side" jet

Figure: Biased hard scatter vertices and corresponding $\Delta\phi$ correlations

Michael Oliver (Yale) Surface Bias April 14, 2016 4 / 44

Why is Surface Bias Interesting

- Placing certain cuts on reconstructed jets may bias towards hard scatters occuring closer to the surface of the overlap region.
- For a dijet pair, this would enhances the path length of the "away-side" jet
- Is this consistent with models?

Figure: Biased hard scatter vertices and corresponding $\Delta\phi$ correlations

Why is Surface Bias Interesting

- Placing certain cuts on reconstructed jets may bias towards hard scatters occuring closer to the surface of the overlap region.
- For a dijet pair, this would enhances the path length of the "away-side" jet
- Is this consistent with models?
- Can we tune/control surface bias?

Figure: Biased hard scatter vertices and corresponding $\Delta\phi$ correlations

Some Surface Bias Methods

- Reconstructing a jet
- Constituent Cut: cut on p_T of tracks
- Hard Core Cut: Require jet to have ≥ 1 high p_T track

Outline

- Motivation
- 2 Models
- Methods
- Surface Bias Results
- Observable effects

Models: JEWEL (Jet Evolution With Energy Loss)

K. Zapp et al. JHEP 1303 (2013) 080, EPJC C60 (2009) 617

- Explicit pQCD treatment of hard parton $2 \rightarrow 2$ scatterings with partons sampled from a simple (1+1D) hydro model
- Can keep or discard the medium partons that interact with partons from hard scatter
 - Keeping these "recoils" adds soft background

Event type	Temperature (MeV)	\sqrt{s}	Centrality
AuAu	360	200 GeV	0-5 %
PbPb	500	2.76 TeV	0-5 %

Models: YaJEM (Yet another Jet Energy-loss Model)

T. Renk, Phys. Rev. C 84 (2011) 067902 and refs therein

Parton-medium interaction modelled via virtuality exchange:

$$\Delta Q^2 = \kappa \int \epsilon^{3/4}(\xi) d\xi$$

- Parton gains virtuality, leading to broadening and softening of shower.
 The YaJEM code does not generate events or simulate a medium.
- We input:
 - κ parameter fit to charged hadron R_{AA} at both energies: $\kappa = 2$
 - Hard Scatters from pythia
 - Energy density from JEWEL's hydro

→ロト →回ト → 重ト → 重 → りへ○

Sanity Check

- Compare hadron R_{AA}
- Simulations consistent at high p_T

S. Adler et al. (PHENIX Collaboration) Phys. Rev. C 76, 034904

Figure: RHIC Comparison (200 GeV)

Chatrchyan eta I. (CMS Collaboration) Eur.Phys.J. C72 (2012) 1945

Figure: LHC Comparison (2.76 TeV)

Michael Oliver (Yale) Surface Bias April 14, 2016 9 / 44

Outline

- Motivation
- 2 Models
- Methods
- Surface Bias Results
- Observable effects

"Measurements" of Surface Bias

• Reconstruct leading jet using:

Event type	Jet Algorithm
AuAu	Anti- $kT (R = 0.4)$
PbPb	Anti- $kT (R = 0.2)$

- ullet $|\eta| < 1$ for all particles
- $|\eta_{textiet}| < 1 R$
- Define coordinates: $(x, y)_{jet}$, where -x direction of jet
- Find distribution of hard scatter vertex

"Measurements" of Surface Bias

Example Distributions: AuAu at $\sqrt{s} = 200 \text{ GeV/c}$

 Quantify bias by measuring average x vertex of hard scatter in jet frame

Parameters We've Tested

- We test the following:
 - Requiring the trigger jet to have a "hard core" (constituent with $p_t > 6 \text{ GeV/c}$)
 - ullet Require constituents pass a p_T cut before Jet Reconstruction
- We can also vary the level of the hard core cut (have done with JEWEL)

Outline

- Motivation
- 2 Models
- Methods
- 4 Surface Bias Results
- Observable effects

Surface Bias results: AuAu at 200 GeV

- Models give same magnitude of bias
- Not very sensitive to changes in const. cut

Michael Oliver (Yale) Surface Bias April 14, 2016 15 / 44

What about recoils in JEWEL? (AuAu at 200 GeV

- JEWEL yields less YaJEM-like results without recoils.
- May improve with proper subtraction of JEWEL's recoil 'background'

Surface Bias April 14, 2016 16 / 44

Surface Bias results: PbPb at 2.76 TeV

Figure: JEWEL

Figure: YaJEM

- Hard core effect still not signficant in < x >
- JEWEL shows less bias at LHC energy, but YaJEM does not. Why?

Surface Bias Results: Strange YaJEM surface bias at LHC, (2.76 TeV)

Recall that we are using R=0.4 for RHIC energies and R=0.2 for LHC energies. We have begun investigating effect of R.

Figure: anti-kt, R = 0.4

Figure: anti-kt, R = 0.6

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

• Sensitivity present, but doesn't explain JEWEL-YaJEM difference

Surface Bias Results: Hard Core cut vs x, AuAu at 200 GeV (JEWEL, No Recoils)

- Each column is the x vertex distribution of hard scatters.
- Profile plotted showing mean x, standard deviation

Surface Bias Results: Hard Core cut vs x, AuAu at 200 GeV (JEWEL, No Recoils)

- Each column is the x vertex distribution of hard scatters.
- Profile plotted showing mean x, standard deviation
- Note: these are inclusive jets, no constituent cut

Surface Bias Results: Hard Core cut vs x, AuAu at 200 GeV (JEWEL, No Recoils)

- Each column is the x vertex distribution of hard scatters.
- Profile plotted showing mean x, standard deviation
- Note: these are inclusive jets, no constituent cut
- Hard Core cut effective around 4-8 GeV/c

Surface Bias Results: Hard Core cut, RHIC vs LHC (JEWEL)

Figure: AuAu (200 GeV) (JEWEL, No recoils)

Figure: PbPb (2760 GeV) (JEWEL, No recoils)

Demonstration of relative difficulty of surface bias at the LHC

Michael Oliver (Yale) Surface Bias April 14, 2016 20 / 44

Outline

- Motivation
- 2 Models
- Methods
- Surface Bias Results
- Observable effects

Observable Effects: Jet-Hadron Correlations

- Trigger on high p_T jet, correlate hadrons (or tracks)
- Subtract combinatorial background (fake jets), if necessary
- This has been studied at RHIC by STAR (arxiv:1302.6184) and at the LHC by CMS (arXiv:1601.00079)
- We follow the STAR study by look at awayside peak in angular correlations

Phys.Rev.Lett. 112 (2014) 12, _122301 _ _

Michael Oliver (Yale) Surface Bias April 14, 2016 22 / 44

Observable Effects: Jet-Hadron Correlations

Phys.Rev.Lett. 112 (2014) 12, 122301

- Fit awayside to $Y_{\rm AS}$ * $\frac{1}{\sqrt{2\pi\sigma_{\rm AS}^2}} \exp{-(\Delta\phi-\pi)})^2/2\sigma_{\rm AS}^2$
- Compare σ_{AS} in AA to pp
- Calculate $D_{AA}(p_T^{\mathrm{assoc}}) = Y_{AS}^{AA} * \langle p_T^{\mathrm{assoc}} \rangle Y_{AS}^{pp} * \langle p_T^{\mathrm{assoc}} \rangle$

Observable Effects: Jet-Hadron Correlations

What we do:

- Fit to a sum of two gaussians for near side, and a generalized normal distribution for the awayside
 - 2 Gaussians for near side peak (shape affected by jet reconstruction)
 - Generalized normal dist. fits awayside peak better than Gaussian
- We use Full Width at Half Maximum (FWHM) to characterize width

Example Widths Comparison: pp vs AuAu at 200 GeV

Figure: FWHM for $15 \le p_T^{jet} < 20$ (JEWEL, with RECOILS)

- Example of what a width comparison can look like
- Model prediction for broadening of awayside peak for low associated p_T

Effect on Jet-hadron correlations: Widths

Figure: FWHM for AuAu at 200 GeV, YaJEM, $20 \le p_T^{jet} < 40$

Now look width prediction with different constituent cuts

- With higher surface bias, the awayside width appears narrower
- Apparent narrowing of awayside peak with more surface bias?

Effect on Jet-hadron correlations: Widths

Figure: FWHM for AuAu at 200 GeV, YaJEM, $20 \le p_T^{jet} < 40$

Now look width prediction with different constituent cuts

- With higher surface bias, the awayside width appears narrower
- Apparent narrowing of awayside peak with more surface bias?
- A sign of collimation in the model? ...

Michael Oliver (Yale)

Effect on Jet-hadron correlations: Widths

Figure: FWHM for AuAu at 200 GeV, YaJEM, $20 \le p_T^{jet} < 40$

Now look width prediction with different constituent cuts

- With higher surface bias, the awayside width appears narrower
- Apparent narrowing of awayside peak with more surface bias?
- A sign of collimation in the model? ...
- Or a result of changing jet energy scale and quark/gluon ratio?

26 / 44

Michael Oliver (Yale) Surface Bias April 14, 2016

Other effects: Leading Jet R_{AA}

Figure: Leading Jet R_{AA} for AuAu at 200 GeV (JEWEL, No recoils)

- Higher Const Cut ⇒ less supression?
 - Consistent with surface bias, but ...

27 / 44

Other effects: Leading Jet R_{AA}

Figure: Leading Jet R_{AA} for AuAu at 200 GeV (JEWEL, No recoils)

- Higher Const Cut ⇒ less supression?
 - Consistent with surface bias, but ...
 - Like the widths, this could also be explained by selecting quark jets, or by changing jet energy scale

Summary and Outlook

• "All models are wrong, but some are useful" - George Box

Summary and Outlook

- "All models are wrong, but some are useful" George Box
- Estimation of surface bias is model dependent → depends on physics we are trying to study!

- "All models are wrong, but some are useful" George Box
- ullet Estimation of surface bias is model dependent o depends on physics we are trying to study!
- YaJEM and JEWEL both indicate that surface bias is a real effect

28 / 44

- "All models are wrong, but some are useful" George Box
- ullet Estimation of surface bias is model dependent o depends on physics we are trying to study!
- YaJEM and JEWEL both indicate that surface bias is a real effect
- The hard core cut does not have a significant effect beyond reconstructing jets (in these models)

- "All models are wrong, but some are useful" George Box
- ullet Estimation of surface bias is model dependent o depends on physics we are trying to study!
- YaJEM and JEWEL both indicate that surface bias is a real effect
- The hard core cut does not have a significant effect beyond reconstructing jets (in these models)
- Varying the consitituent cut does not give us a powerful way to tune surface bias

- "All models are wrong, but some are useful" George Box
- \bullet Estimation of surface bias is model dependent \to depends on physics we are trying to study!
- YaJEM and JEWEL both indicate that surface bias is a real effect
- The hard core cut does not have a significant effect beyond reconstructing jets (in these models)
- Varying the consitituent cut does not give us a powerful way to tune surface bias
- Need to investigate:
 - Surface bias in bins of true hard scatter and of background subtracted p_T
 - Effect of jet algorithm
 - Hadron Trigger
 - Effect of more advanced hydro
 - Effect on quark/gluon selection

Backup Slides

Strange YaJEM surface bias at LHC

0.0035 0.003 0.0025 0.0015 0.0016 0.0005

Figure: anti-kt, R = 0.4

Figure: anti-kt, R = 0.6

• Surface bias is also sensitive to R

Michael Oliver (Yale) Surface Bias April 14, 2016 30 / 44

Strange YaJEM surface bias at LHC

Figure: 1+1D Hydro (from JEWEL)

Figure: 2+1D Hydro (superSONIC, initial conditions from Glauber built into JEWEL)

31 / 44

Parameters

Event type	Temperature (MeV)	\sqrt{s}	Centrality	Recoils?
AuAu	360	200 GeV	0-5 %	Keep
PbPb	500	2.76 TeV	0-5 %	Keep

Table: JEWEL Parameters

$$\kappa$$
 2 Hydro Same as JEWEL

Table: YaJEM parameters

Event type	Jet Algorithm	
AuAu	Anti- kT (R = 0.4)	
PbPb	Anti- kT (R = 0.2)	

Table: Analysis Parameters

Background subtraction for JEWEL

- Necessary when recoils in JEWEL are kept. Results in many low pt particles, not unlike an actual underlying event.
- Multiple techniques tried
- Currently: fit nearside of $\Delta\phi \Delta\eta$ correlations to sum of two Gaussian + 'tent' function
 - ullet η -dependence \Longrightarrow not enough, may need to use mixed event method

Widths Method Explanation

Generalized Normal distribution in terms of omega (FWHM):

•
$$f_{\mu,\omega,\beta}(x) = \frac{\beta(\ln(2))^{1/\beta}}{\omega\Gamma(1/\beta)} \exp\left\{-\ln(2)(2|x-\mu|/\omega)^{\beta}\right\}$$

- Trying new definition for width: full width at half max
 - For Gaussian: $\omega = 2\sigma\sqrt{2\ln(2)}$
 - For Generalized Normal: $\omega = 2\sigma\sqrt{\frac{\Gamma(1/\beta)}{\Gamma(3/\beta)}}\left(\ln(2)\right)^{1/\beta}$
- Reparameterized:
 - $f_{\mu,\omega,\beta}(x) = \frac{\beta(\ln(2))^{1/\beta}}{\omega\Gamma(1/\beta)} \exp\left\{-\ln(2)(2|x-\mu|/\omega)^{\beta}\right\}$

Example Width Method Comparisons

Figure: pp @ 2.76 TeV, $10 \text{ GeV/c} < p_T^{jet} < 15 \text{ GeV/c}$

Figure: pp @ 2.76 TeV, $15 \text{ GeV/c} < p_T^{jet} < 20 \text{ GeV/c}$

•
$$S \equiv \frac{N_{\text{vertices}}(x<0)}{N_{\text{vertices}}(x>0)}$$

Michael Oliver (Yale) Surface Bias April 14, 2016 36 / 4

Surface Bias results: AuAu at 200 GeV

S vs Constituent Cut (10 ≤ p_T^{jet} < 15)

1.95

1.95

1.95

1.96

1.97

1.97

1.98

1.99

1.99

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.90

1.9

Figure: JEWEL

Figure: YaJEM

• Higher $S \implies$ more surface bias

Surface Bias results: AuAu at 200 GeV

Figure: JEWEL

Figure: YaJEM

Michael Oliver (Yale)

Surface Bias results: PbPb at 2.76 TeV

Figure: JEWEL

ullet Higher $S \Longrightarrow \operatorname{more} \operatorname{surface} \operatorname{bias}$

Figure: YaJEM

Surface Bias results: PbPb at 2.76 TeV

Figure: JEWEL

Figure: YaJEM

Michael Oliver (Yale)

Jet-Hadron Observables

- Trigger on high p_T jet, correlate hadrons in $\Delta \eta, \Delta \phi$
- Subtract combinatorial background (fake jets), if necessary

Figure: $\Delta \phi - \Delta \eta$ Correlations

Figure: $\Delta \phi$ Projection

Example of Nearside Shape

jetHadron_jetPt_10_15_particlePt_4.00_6.00

Effect on Jet-hadron correlations: Widths (JEWEL)

Figure: FWHM for AuAu at 200 GeV, JEWEL, $20 \le p_T^{jet} < 40$

Effect on Jet-hadron correlations: Widths (JEWEL)

Figure: FWHM for PbPb 2.76 TeV, JEWEL, $20 \le p_T^{jet} < 40$

Michael Oliver (Yale)

Surface Bias

April 14, 2016

44 / 44